CRITICAL / STATIONARY POINTS

Firstly, think about the word stationary... it means not moving.

A stationary point, commonly also referred to as a critical point, is a point on a function in which the **gradient at that point is equal to zero**.

In other words, a point on a function in which the gradient function / derivative is equal to zero (f'(x) = 0)

Three types (nature of the critical point)

Finding critical points (example)

Find the co-ordinates for ALL critical points of the function $f(x) = \frac{x^3}{3} - 3x^2 + 8x + 2$

$$f'(x) = x^{2} - 6x + 8 = 0$$

(x - 2)(x - 4) = 0
x = 2 or x = 4

$$f(2) = \frac{26}{3}$$
 and $f(4) = \frac{22}{3}$

 \Rightarrow Substitute x values into f(x) to give coordinates

 \Rightarrow Set f'(x) = 0 to solve for critical points

 \Rightarrow Factorise to use null factor theorem

 \Rightarrow x values for critical points found

Points
$$\left(2, \frac{26}{3}\right)$$
 and $\left(4, \frac{22}{3}\right)$ are the critical points

