CONTINUOUS DATA

No 2 are exactly the same!

Remember, with continuous data, no 2 values are exactly the same

Examples...

The height of each person in a 5 person soccer team { 168.2cm , 169.3cm , 174.2cm , 190.2cm , 158.4cm }	Continuous
Distance run by team members in a netball game { 1682.5m , 2893.2m , 2653.8m , 1987.6m , 3465.2m }	Continuous
Time taken to run 100m at Olympics. { 9.56s , 9.58s , 10.43s , 10.87s , 11.29s }	Continuous

So what do we do with discrete data?

We organise it often into class intervals. It wouldn't be possible to do a useful column graph with individual data sets because they're all different!

For Example, take the following data set which represents height of each person in a class of 11 people

{ 139.2cm , 141.3cm , 148.3cm , 153.4cm , 156.5cm , 159.3cm , 159.6cm , 159.8cm , 168.4cm , 169.2cm , 176.5cm }

This data can be organised into a class interval frequency table

Height Interval	Frequency
$130cm \le height < 140cm$	1
$140cm \le height < 150cm$	2
$150cm \le height < 160cm$	5
$160cm \le height < 170cm$	2
$170cm \le height < 180cm$	1

No 2 are exactly the same!

Can we do more?...

Continuous data, once converted to class intervals, is often displayed with histograms.

Plotting the data from the previous example yields...

[&]quot;modal class = $150cm \le height < 160cm$ "

