
DISCRETE DATA

Exact Numbers!

So what do we do with discrete data?

We organise it often in tally's or frequency tables!

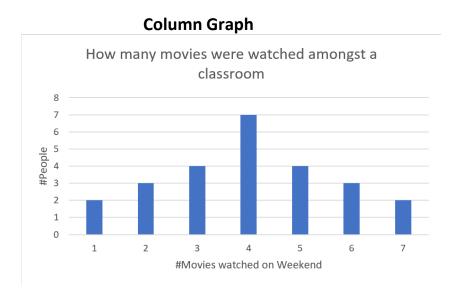
For Example, take the following data set which represents #movies watched on the weekend for every person in your 25 member classroom!

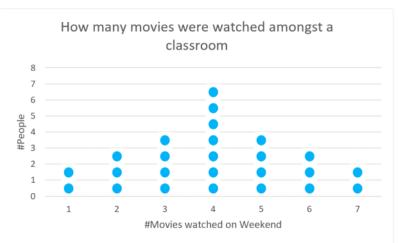
 $\{1, 2, 3, 1, 2, 4, 4, 5, 5, 6, 4, 2, 3, 3, 4, 4, 5, 6, 7, 3, 4, 5, 6, 4, 7\}$

#Movies watched Frequency #Movies watched | Tally 1 2 1 Ш $\overline{1}$ 2 2 Ш 3 3 Ш 3 4 This reads... 4 7 4 111111 "2 people watched 1 Ш 5 4 5 movie" 6 Ш 6 3 7 2 7 Ш

This data can be organised into a tally or a frequency table

DISCRETE DATA


Exact Numbers!


Can we do more?...

Discrete data is often displayed onto column graphs or dot-plots

Displaying the data on the previous example yields...

Dot-Plot

DISCRETE DATA

Exact Numbers!

Large data sets??

Sometimes if we have a large amounts of discrete data, we can use "class intervals"

Consider the following large data set...

{ 1, 11, 13, 23, 26, 27, 28, 31, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 52, 53, 54, 57, 59, 63, 61, 62, 69, 72, 73, 81}

This data set can be converted into a frequency table with class intervals of width "10"

Interval	Frequency
0-9	1
10-19	2
20-29	4
30-39	5
40-49	7
50-59	5
60-69	4
70-79	2
80-89	1

Plotting this as a column graph can be done below Converting a data set into a class interval data set 8 7 6 Frequency 5 4 3 2 1 0 0-9 10--19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 Class Interval "modal class = 40-49"

