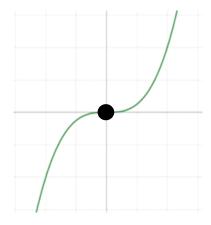

CRITICAL / STATIONARY POINTS


f'(x)=0

The Sign Test

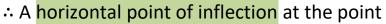
Minimum (MIN)

- The gradient to the left of the critical point is negative; f'(x) < 0
- The gradient at the critical point is 0; f'(x) = 0
- The gradient to the right of the critical point is positive; f'(x) > 0

Maximum (MAX)

- The gradient to the left of the critical point is positive; f'(x) > 0
- The gradient at the critical point is 0; f'(x) = 0
- The gradient to the right of the critical point is negative; f'(x) < 0

Horizontal Point of Inflection (HPOI)


- The gradient to the left of the critical point is negative/positive
- The gradient at the critical point is 0
- The gradient to the right of the critical point is negative/positive

Example Find the coordinates and nature of the critical point(s) of the function $f(x) = x^3 + 3$

Critical points are when $f'(x) = 0 \rightarrow 3x^2 = 0 \rightarrow x^2 = 0 \rightarrow x = 0$

♦ Now find the gradient either side of 0

x	-0.1	0	+0.1
f'(x)	+ve	0	+ve

$$(0, f(0)) = (0, (0)^3 + 3) = (0,3)$$

